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COMPLEX NUMBERS AND
QUADRATIC EQUATIONS

W. R. Hamilton
(1805-1865)

Mathematics is the Queen of Sciences and Arithmetic is the Queen of
Mathematics. – GAUSS 

5.1  Introduction
In earlier classes, we have studied linear equations in one
and two variables and quadratic equations in one variable.
We have seen that the equation x2 + 1 = 0 has no real
solution as x2 + 1 = 0 gives x2 = – 1 and square of every
real number is non-negative. So, we need to extend the
real number system to a larger system so that we can
find the solution of the equation x2 = – 1. In fact, the main
objective is to solve the equation ax2 + bx + c = 0, where
D = b2 –  4ac < 0, which is not possible in the system of
real numbers.

5.2  Complex Numbers

Let us denote 1−  by the symbol i. Then, we have 2 1i = − . This means that i is a
solution of the equation x2 + 1 = 0.

A number of the form a + ib, where a and b are real numbers, is defined to be a

complex number. For example, 2 + i3,  (– 1) + 3i ,  
14

11
i −⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 are complex numbers.

For the complex number z = a + ib, a is called the real part, denoted by Re z and
b is called the imaginary part denoted by Im z of the complex number z. For example,
if z = 2 + i5, then Re z = 2 and Im z = 5.

Two complex numbers z1 = a + ib and z2 = c + id are equal if  a = c and b = d.

5
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98       MATHEMATICS

Example 1 If 4x + i(3x – y) = 3 + i (– 6), where x and y are real numbers, then find
the values of x and y.

Solution We have
4x + i (3x – y) = 3 + i (–6) ... (1)

Equating the real and the imaginary parts of (1), we get
4x = 3, 3x – y = – 6,

which, on solving simultaneously, give  
3
4

x =  and 
33
4

y = .

5.3   Algebra of Complex Numbers
In this Section, we shall develop the algebra of complex numbers.

5.3.1   Addition of two complex numbers Let z1 = a + ib and z2 = c + id be any two
complex numbers. Then, the sum  z1 + z2 is defined as follows:

z1 + z2 = (a + c) + i (b + d), which is again a complex number.
For example, (2 + i3) + (– 6 +i5) = (2 – 6) + i (3 + 5) = – 4 + i 8

The addition of complex numbers satisfy the following properties:
(i) The closure law  The sum of two complex numbers is a complex

number, i.e., z1 + z2 is a complex number for all complex numbers
z1 and z2.

(ii) The commutative law  For any two complex numbers z1 and z2,
z1 + z2 = z2

 + z1
(iii) The associative law  For any three complex numbers z1, z2, z3,

(z1 + z2) + z3 = z1 + (z2 + z3).
(iv) The existence of additive identity  There exists the complex number

0 + i 0 (denoted as 0), called the additive identity or the zero complex
number, such that, for every complex number z, z + 0 = z.

(v) The existence of additive inverse  To every complex number
z = a + ib, we have the complex number – a + i(– b) (denoted as –  z),
called the additive inverse or negative of z. We observe that z + (–z) = 0
(the additive identity).

5.3.2  Difference of two complex numbers Given any two complex numbers z1 and
z2, the difference z1 – z2 is defined as follows:

z1 – z2 = z1 + (– z2).
For example, (6 + 3i) – (2 – i) = (6 + 3i) + (– 2 + i ) = 4 + 4i
and (2 –  i) – (6 + 3i) = (2 – i) + ( – 6 – 3i) = – 4 – 4i
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COMPLEX NUMBERS AND QUADRATIC EQUATIONS       99

5.3.3  Multiplication of two complex numbers Let z1 = a + ib and z2 = c + id be any
two complex numbers. Then, the product z1 z2 is defined as follows:

z1 z2 = (ac –  bd) + i(ad + bc)
For example, (3 + i5) (2 + i6) = (3 × 2 – 5 × 6) + i(3 × 6 + 5 × 2) = – 24 + i28

The multiplication of complex numbers possesses the following properties, which
we state without proofs.

(i) The closure law The product of two complex numbers is a complex number,
the product z1 z2 is a complex number for all complex numbers z1 and z2.

(ii) The commutative law For any two complex numbers z1 and z2,
z1 z2 = z2 z1

.

(iii) The associative law For any three complex numbers z1, z2, z3,
(z1 z2) z3 = z1 (z2 z3).

(iv) The existence of multiplicative identity There exists the complex number
1 + i 0 (denoted as 1),  called the multiplicative identity such that z.1 = z,
for every complex number z.

(v) The existence of multiplicative inverse For every non-zero complex
number z = a + ib or a + bi(a ≠ 0, b ≠ 0), we have the complex number

2 2 2 2
a –bi

a b a b
+

+ +
 (denoted by 

1
z

 or z–1 ), called the multiplicative inverse

of z such that

1 1z.
z
=  (the multiplicative identity).

(vi) The distributive law For any three complex numbers z1, z2, z3,
(a)  z1 (z2 + z3) = z1 z2 + z1 z3
(b)  (z1 + z2) z3 = z1 z3 + z2 z3

5.3.4  Division of two complex numbers Given any two complex numbers z1 and  z2,

where 2 0z ≠ , the quotient 1

2

z
z  is defined by

1
1

2 2

1z z
z z

=

For example, let z1 = 6 + 3i and  z2 = 2 – i

Then 1

2

1(6 3 )
2

z i
z i

⎛ ⎞= + ×⎜ ⎟−⎝ ⎠
 = ( )6 3i+  ( )

( )
( )2 22 2

12
2 1 2 1

i
⎛ ⎞− −
⎜ ⎟+
⎜ ⎟+ − + −⎝ ⎠
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100       MATHEMATICS

= ( ) 26 3
5

ii +⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 = ( ) ( )1 112 3 6 6 9 12
5 5

i i⎡ − + + ⎤ = +⎣ ⎦

5.3.5  Power of i  we know that

( )3 2 1i i i i i= = − = − , ( ) ( )
2 24 2 1 1i i= = − =

( ) ( )
2 25 2 1i i i i i= = − = ,  ( ) ( )

3 36 2 1 1i i= = − = − , etc.

Also, we have    1 2
2

1 1 1, 1,
1 1

i ii i i
i i i

− −= × = = − = = = −
− −

     3 4
3 4
1 1 1 1, 1

1 1
i ii i i

i ii i
− −= = × = = = = =

−
In general, for any integer k, i4k = 1, i4k + 1 = i, i4k + 2 = –1, i4k + 3 = – i

5.3.6  The square roots of a negative real number
Note that  i2 = –1 and  ( – i)2 = i2 = – 1
Therefore,  the square roots of – 1 are i, – i. However, by the symbol 1− , we would
mean i only.

Now, we can see that i and –i both are the solutions of the equation x2 + 1 = 0 or
x2 = –1.

Similarly ( ) ( )2 2
3 3i =  i2 = 3 (– 1) = – 3

( )2
3 i−  = ( )2

3−  i2 = – 3

Therefore,  the square roots of –3 are 3 i  and 3 i− .

Again, the symbol 3−  is meant to represent 3 i  only, i.e., 3−  = 3 i .

Generally, if a is a positive real number, a−  = 1a −  = a i ,

We already know that a b×  = ab  for all positive real number a and b. This

result also holds true when either a > 0, b < 0  or a < 0,  b > 0. What if a < 0, b < 0?
Let us examine.

Note that
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COMPLEX NUMBERS AND QUADRATIC EQUATIONS       101

( ) ( )2 1 1 1 1i = − − = − −  (by assuming a b×  = ab  for all real numbers)

= 1  = 1,  which is a contradiction to the fact that = −2 1i .

Therefore, a b ab× ≠  if both a and b are negative real numbers.

Further, if any of a and b is zero, then, clearly, a b ab× = = 0.
5.3.7 Identities We prove the following identity

( )2 2 2
1 2 1 2 1 22z z z z z z+ = + + , for all complex numbers z1 and z2.

Proof  We have, (z1 + z2)
2 = (z1 + z2) (z1 + z2),

=  (z1 + z2) z1 + (z1 + z2) z2 (Distributive law)

= 2 2
1 2 1 1 2 2z z z z z z+ + + (Distributive law)

    = 2 2
1 1 2 1 2 2z z z z z z+ + + (Commutative law of multiplication)

    = 2 2
1 1 2 22z z z z+ +

Similarly, we can prove the following identities:

(i) ( )2 2 2
1 2 1 1 2 22z z z z z z− = − +

(ii) ( )3 3 2 2 3
1 2 1 1 2 1 2 23 3z z z z z z z z+ = + + +

(iii) ( )3 3 2 2 3
1 2 1 1 2 1 2 23 3z z z z z z z z− = − + −

(iv) ( ) ( )2 2
1 2 1 2 1 2z – z z z z – z= +

In fact, many other identities which are true for all real numbers, can be proved
to be true for all complex numbers.

Example 2 Express the following in the form of  a + bi:

(i) ( ) 15
8

i i⎛ ⎞− ⎜ ⎟
⎝ ⎠

(ii) ( ) ( )2i i−  
31

8
i⎛ ⎞−⎜ ⎟

⎝ ⎠

Solution (i) ( ) 15
8

i i⎛ ⎞− ⎜ ⎟
⎝ ⎠

 = 25
8

i−
 = ( )5 1

8
−

−  = 
5
8

= 
5 0
8

i+

(ii) ( ) ( )
312

8
i i i⎛ ⎞− −⎜ ⎟

⎝ ⎠
 = 512

8 8 8
i× ×

× ×
  = ( )221

256
i  

1
256

i i= .
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102       MATHEMATICS

Example 3 Express (5 – 3i)3 in the form a + ib.

Solution We have, (5 – 3i)3 = 53 – 3 × 52 × (3i) + 3 × 5 (3i)2 – (3i)3

= 125 –  225i – 135 + 27i  = – 10 – 198i.

Example 4 Express ( )( )3 2 2 3 i− + − − in the form of a + ib

Solution We have,  ( ) ( )3 2 2 3 i− + − −   = ( ) ( )3 2 2 3i i− + −

= 26 3 2 6 2i i i− + + −  = ( ) ( )6 2 3 1 2 2 i− + + +

5.4  The Modulus and the Conjugate of a Complex Number
Let z = a + ib be a complex number. Then, the modulus of z, denoted by | z |, is defined

to be the  non-negative real number 2 2a b+ , i.e., | z | = 2 2a b+  and the conjugate

of z, denoted as z , is the complex number a –  ib, i.e.,  z  = a –  ib.

For example, 2 23 3 1 10i+ = + = ,  2 22 5 2 ( 5) 29i− = + − = ,

and 3 3i i+ = − ,  2 5 2 5i i− = + , 3 5i− −  = 3i – 5
Observe that the multiplicative inverse of the non-zero complex number z is

given by

z–1 = 
1

a ib+
 = 2 2 2 2

a bi
a b a b

−
+

+ +
 = 2 2

a ib
a b
−
+

 =  2
z
z

or         z 2z z=

Furthermore, the following results can easily be derived.
For any two compex numbers z1 and z2 , we have

(i) 1 2 1 2z z z z= (ii)
11

2 2

zz
z z

=  provided 2 0z ≠

(iii) 1 2 1 2z z z z= (iv) 1 2 1 2z z z z± = ± (v) 1 1

2 2

z z
z z

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 provided z2 ≠ 0.
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COMPLEX NUMBERS AND QUADRATIC EQUATIONS       103

Example 5 Find the multiplicative inverse of 2 –  3i.

Solution Let z = 2 –  3i

Then z  = 2 + 3i and 2 2 22 ( 3) 13z = + − =

Therefore,   the multiplicative inverse of 2 3i− is given by

z–1 2
2 3 2 3

13 13 13
z i i
z

+
= = = +

The above working can be reproduced in the following manner also,

z–1 =
1 2 3

2 3 (2 3 )(2 3 )
i

i i i
+

=
− − +

= 2 2
2 3 2 3 2 3

13 13 132 (3 )
i i i
i

+ +
= = +

−

Example 6 Express the following in the form a + ib

(i) 
5 2
1 2

i
i

+
−

(ii)  i–35

Solution (i)  We have, 
5 2 5 2 1 2
1 2 1 2 1 2

i i i
i i i

+ + +
= ×

− − +
  

( )2
5 5 2 2 2

1 2

i i

i

+ + −
=

−

= 
3 6 2 3(1 2 2 )

1 2 3
i i+ +
=

+
 = 1 2 2i+ .

(ii) 
( )

35
35 172

1 1 1 ii
i ii i i

− = = = ×
−

 = 2
i i
i
=

−

EXERCISE 5.1

Express each of the complex number given in the Exercises 1 to 10 in the
form a + ib.

1. ( ) 35
5

i i⎛ ⎞−⎜ ⎟
⎝ ⎠

2. i i9 19+ 3. i −39
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104       MATHEMATICS

Fig 5.1

4. 3(7 + i7) + i (7 + i7) 5. (1 – i) – ( –1 + i6)

6.  
1 2 54
5 5 2

i i⎛ ⎞ ⎛ ⎞+ − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

7.
1 7 1 44
3 3 3 3

i i i⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

8. (1 – i)4 9.
31 3

3
i⎛ ⎞+⎜ ⎟

⎝ ⎠
10.

312
3

i⎛ ⎞− −⎜ ⎟
⎝ ⎠

Find the multiplicative inverse of each of the complex numbers given in the
Exercises 11 to 13.

11. 4 –  3i 12. 5 3i+ 13. – i
14. Express the following expression in the form of a + ib :

( ) ( )
( ) ( )

3 5 3 5

3 2 3 2

i i

i i

+ −

+ − −

5.5  Argand Plane and Polar Representation
We already know that corresponding to
each ordered pair of real numbers
(x, y), we get a unique point in the XY-
plane and vice-versa with reference to a
set of mutually perpendicular lines known
as the x-axis and the y-axis. The complex
number x + iy which  corresponds to the
ordered pair (x, y) can be represented
geometrically as the unique point P(x, y)
in the XY-plane and vice-versa.

Some complex numbers such as
2 + 4i, – 2 + 3i, 0 + 1i, 2 + 0i, – 5 –2i and
1 – 2i which correspond to the ordered
pairs (2, 4), ( – 2, 3), (0, 1), (2, 0), ( –5, –2), and (1, – 2), respectively, have been
represented geometrically by the points A, B, C, D, E, and F, respectively in
the Fig 5.1.

The plane having a complex number assigned to each of its point is called the
complex plane or the Argand plane.
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COMPLEX NUMBERS AND QUADRATIC EQUATIONS       105

Obviously, in the Argand plane, the modulus of the complex number

x + iy = 2 2x y+  is the distance between the point P(x, y) and the origin O (0, 0)

(Fig 5.2). The points on the x-axis corresponds to the complex numbers of the form
a + i 0 and the points on the y-axis corresponds to the complex numbers of the form

Fig 5.2

Fig 5.3

0 + i b. The x-axis and y-axis in the Argand plane are called, respectively, the real axis
and the imaginary axis.

The representation of a  complex number z = x + iy and its conjugate
z = x – iy in the Argand plane are, respectively, the points P (x, y) and Q (x, – y).

Geometrically, the point (x, – y) is the mirror image of the point (x, y) on the real
axis (Fig 5.3).
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106       MATHEMATICS

5.5.1  Polar representation of a complex
number Let the point P represent the non-
zero complex number z = x + iy. Let the
directed line segment OP be of length r and
θ be the angle which OP makes with the
positive direction of x-axis (Fig 5.4).

We may note that the point P is
uniquely determined by the ordered pair of
real numbers (r, θ), called the polar
coordinates of the point P. We consider
the origin as the pole and the positive
direction of the x axis as the initial line.

We have, x = r cos θ, y = r sin θ and therefore, z = r (cos θ + i sin θ). The latter

is said to be the polar form of the complex number. Here 2 2r x y z= + =  is the

modulus of z and θ is called the argument (or amplitude) of z which is denoted by arg z.
For any complex number z ≠ 0, there corresponds only one value of θ in

0 ≤ θ < 2π. However, any other interval of length 2π, for example – π <  θ ≤ π, can be
such an interval.We shall take the value of θ such that – π <  θ ≤  π, called principal
argument of z and is denoted by arg z, unless specified otherwise.  (Figs. 5.5 and 5.6)

Fig 5.4

Fig 5.5 ( )0 2≤ θ < π

Fig 5.6 (– π < θ ≤ π )
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Example 7 Represent the complex number 1 3z i= +  in the polar form.
Solution Let 1 = r cos θ, 3  = r sin θ

By squaring and adding, we get

( )2 2 2cos θ sin θ 4r + =

i.e., r = =4 2 (conventionally, r >0)

Therefore,
1cos θ
2

= , 
3sin θ

2
= , which gives θ

π
=
3

Therefore, required polar form is  
π π2 cos sin
3 3

z i⎛ ⎞= +⎜ ⎟
⎝ ⎠

The complex number z i= +1 3  is represented as shown  in Fig 5.7.

Example 8 Convert the complex number 
16

1 3i
−
+

 into polar form.

Solution The given complex number  
16

1 3i
−
+

 = 
16 1 3

1 3 1 3
i

i i
− −

×
+ −

         = 
( )
( )

( )
2

–16 1– 3 –16 1– 3
=

1+ 31– 3

i i

i
 = ( )– 4 1– 3 = – 4 + 4 3i i  (Fig 5.8).

Let  – 4 = r cos θ, 4 3  = r sin θ
By squaring and adding, we get

16 + 48 = ( )2 2 2cos θ + sin θr

which gives         r2 = 64,  i.e.,  r = 8

Hence    cos θ = −
1

2
,  sin θ  = 

3

2

         
π 2πθ = π – =
3 3

Thus, the required polar form is  
2π 2π8 cos sin
3 3

i⎛ ⎞+⎜ ⎟
⎝ ⎠

Fig  5.7

Fig  5.8© N
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108       MATHEMATICS

EXERCISE 5.2
Find the modulus and the arguments of each of the complex numbers in
Exercises 1 to 2.
1.  z = – 1 –  i 3 2. z = – 3  + i

Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:
3. 1 – i 4.  – 1 + i 5.  – 1 – i
6. – 3 7. 3  + i 8. i

5.6  Quadratic Equations
We are already familiar with the quadratic equations and have solved them in the set
of real numbers in the cases where discriminant is non-negative, i.e., ≥  0,

Let us consider the following quadratic equation:

02 =++ cbxax  with real coefficients a, b, c and a ≠ 0.
Also, let us assume that the  b2 – 4ac < 0.
Now, we know that we can find the square root of negative real numbers in the

set of complex numbers. Therefore, the solutions to the above equation are available in
the set of complex numbers which are given by

x = 
2 24 4

2 2
b b ac b ac b i

a a
− ± − − ± −

=

Note    At this point of time, some would be interested to know as to how many
roots does an equation have? In this regard, the following theorem known as the
Fundamental theorem of Algebra is stated below (without proof).

“A polynomial equation has at least one root.”
As a consequence of this theorem, the following result, which is of immense

importance, is arrived at:
“A polynomial equation of degree n has n roots.”

Example 9 Solve  x2 + 2 = 0

Solution  We have, x2 + 2 = 0

or x2 = – 2 i.e., x = 2± −  = 2± i

Example 10  Solve  x2 + x + 1= 0

Solution Here,  b2 – 4ac = 12 – 4 × 1 × 1 = 1 –  4 = – 3
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COMPLEX NUMBERS AND QUADRATIC EQUATIONS       109

Therefore,  the solutions are given by x = 
1 3 1 3
2 1 2

i− ± − − ±
=

×

Example 11 Solve 25 5 0x x+ + =

Solution Here, the discriminant of the equation is

 21 4 5 5− × ×  = 1 –  20 = – 19
Therefore, the solutions are

1 19 1 19
2 5 2 5

i− ± − − ±
= .

EXERCISE 5.3
Solve each of the following equations:
1. x2 + 3 = 0 2. 2x2 + x + 1 = 0 3. x2 + 3x + 9 = 0
4. – x2 + x – 2 = 0 5. x2 + 3x + 5 = 0 6. x2 – x + 2 = 0

7. 22 2 0x x+ + = 8. 23 2 3 3 0x x− + =

9.
2 1 0

2
x x+ + = 10.

2 1 0
2

xx + + =

Miscellaneous Examples

Example 12 Find the conjugate of 
(3 2 )(2 3 )
(1 2 )(2 )

i i
i i

− +
+ − .

Solution We have ,  
(3 2 )(2 3 )
(1 2 )(2 )

i i
i i

− +
+ −

= 
6 9 4 6
2 4 2

i i
i i

+ − +
− + +

 = 
12 5 4 3
4 3 4 3

i i
i i

+ −
×

+ −

= 
48 36 20 15 63 16

16 9 25
i i i− + + −

=
+

 = 
63 16
25 25

i−

Therefore, conjugate of 
(3 2 )(2 3 ) 63 16is
(1 2 )(2 ) 25 25

i i i
i i

− +
+

+ − .
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110       MATHEMATICS

Example 13 Find the modulus and argument of the complex numbers:

(i) 
1
1

i
i

+
−

, (ii) 
1

1 i+

Solution (i) We have, 
1
1

i
i

+
−

= 
1 1 1 1 2
1 1 1 1

i i i i
i i

+ + − +
× = =

− + +
= 0 + i

Now, let us put 0 = r cos θ, 1 = r sin θ
Squaring and adding, r2 = 1 i.e., r = 1 so that

   cos θ = 0, sin θ = 1

Therefore, 
πθ
2

=

Hence, the modulus of 
1
1

i
i

+
−

 is 1 and the argument is 
π
2

.

(ii)   We have
1 1 1 1

1 (1 )(1 ) 1 1 2 2
i i i

i i i
− −

= = = −
+ + − +

Let
1
2

= r cos θ, – 
1
2

 = r sin θ

Proceeding as in part (i) above, we get 1 1 1; cosθ , sinθ
2 2 2

r −
= = =

Therefore
πθ

4
−

=

Hence, the modulus of 
1

1 i+  is 
1
2 , argument is 

π
4
−

.

Example 14 If x + iy = 
a ib
a ib
+
− , prove that x2 + y2 = 1.

Solution We have,

x + iy = 
( )( )
( )( )
a ib a ib
a ib a ib
+ +
− +  = 

2 2

2 2
2a b abi

a b
− +

+  = 
2 2

2 2 2 2
2a b ab i

a b a b
−

+
+ +
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So that,  x –  iy = 
2 2

2 2 2 2
2a b ab i

a b a b
−

−
+ +

Therefore,

x2 + y2 = (x + iy) (x – iy) =  
2 2 2 2 2

2 2 2 2 2 2
( ) 4
( ) ( )
a b a b
a b a b

−
+

+ +
 = 

2 2 2

2 2 2
( )
( )
a b
a b

+
+

 = 1

Example 15 Find real θ such that

3 2 sinθ
1 2 sinθ

i
i

+
−

 is purely real.

Solution We have,

3 2 sinθ
1 2 sinθ

i
i

+
−

 =
(3 2 sinθ)(1 2 sinθ)
(1 2 sinθ)(1 2 sinθ)

i i
i i

+ +
− +

=
2

2
3+6 sinθ+ 2 sinθ – 4sin θ

1+ 4sin θ
i i

 =  
2

2 2
3 4sin θ 8 sinθ
1 4sin θ 1 4sin θ

i−
+

+ +

We are given the complex number to be real. Therefore

2
8sinθ

1 4sin θ+
 = 0, i.e., sin θ = 0

Thus     θ = nπ, n ∈ Z.

Example 16 Convert the complex number 
1

π πcos sin
3 3

iz
i

−
=

+
 in the polar form.

Solution We have, z =
1

1 3
2 2

i

i

−

+

 =
( )2 3 1 32( 1) 1 3

1 31 3 1 3

i ii i
i i

+ − +− −
× =

++ −
 = 

3 1 3 1
2 2

i− +
+

Now, put 3 1 3 1cos , sin
2 2

r rθ θ− +
= =
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Squaring and adding, we obtain

2 2
2 3 1 3 1

2 2
r

⎛ ⎞ ⎛ ⎞− +
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 
( )2

2 3 1 2 4 2
4 4

⎛ ⎞+⎜ ⎟ ×⎝ ⎠ = =

Hence, 2r =  which gives
3 1 3 1cosθ , sinθ

2 2 2 2
− +

= =

Therefore, π π 5πθ
4 6 12

= + =  (Why?)

Hence, the polar form is

5π 5π2 cos sin
12 12

i⎛ ⎞+⎜ ⎟
⎝ ⎠

Miscellaneous Exercise on Chapter 5

1. Evaluate: 

325
18 1i

i
⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
.

2. For any two complex numbers z1 and z2, prove that
Re (z1 z2) = Re z1 Re z2 – Imz1 Imz2

.

3. Reduce  
1 2 3 4

1 4 1 5
i

i i i
−⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟− + +⎝ ⎠ ⎝ ⎠

 to the standard form .

4. If 
a ibx iy
c id
−

− =
−

 prove that ( )
2 222 2
2 2

a bx y
c d
+

+ =
+

.

5. Convert the following in the polar form:

(i) ( )2
1 7
2

i
i

+

− , (ii)
1 3
1– 2

i
i

+

Solve each of the equation in Exercises 6 to 9.

6. 2 203 4 0
3

x x− + = 7.    2 32 0
2

x x− + =

8. 227 10 1 0x x− + =
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9. 221 28 10 0x x− + =

10. If z1 = 2 – i, z2 = 1 + i, find 
1 2

1 2

1
– 1

z z
z z
+ +

+ .

11. If a + ib = 
2

2
( )
2 1
x i
x
+
+

, prove  that  a2 + b2 = ( )
2 2

22

( 1)

2 1

x

x

+

+ .

12. Let z1 = 2 – i, z2 = –2 + i. Find

(i) 
1 2

1
Re z z

z
⎛ ⎞
⎜ ⎟
⎝ ⎠

, (ii) 
1 1

1Im
z z

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

13. Find the modulus and argument of the complex number 
1 2
1 3

i
i

+
−

.

14. Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.

15. Find the modulus of 
1 1
1 1

i i
i i

+ −
−

− + .

16. If (x + iy)3 = u + iv, then show that 2 24( – )u v x y
x y
+ = .

17. If α and β are different complex numbers with β 1= , then find  
β α

1 αβ
–

– .

18. Find the number of non-zero integral solutions of the equation 1 2x x– i = .

19. If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that
(a2 + b2) (c2 + d2) (e2 + f 2) (g2 + h2) = A2 + B2

20. If 
1 1
1

m
i

– i
⎛ ⎞+

=⎜ ⎟
⎝ ⎠

, then find the least positive integral value of m.© N
CERT

no
t to

 be
 re

pu
bli

sh
ed



114       MATHEMATICS

Summary

A number of the form a + ib, where a and b are real numbers, is called a
complex number, a is called the real part and b is called the imaginary part
of the complex number.
Let z1 = a + ib and z2 = c + id. Then
(i) z1 + z2 = (a + c) + i (b + d)
(ii) z1 z2  = (ac – bd) + i (ad + bc)

For any non-zero complex number z = a + ib (a ≠ 0, b ≠ 0), there exists the

complex number 2 2 2 2
a bi

a b a b
−

+
+ + , denoted by 

1
z  or z–1, called the

multiplicative inverse of z such that (a + ib) 
2

2 2 2 2
a bi

a b a b
⎛ ⎞−

+⎜ ⎟
+ +⎝ ⎠

= 1 + i0 =1

For any integer k, i4k = 1, i4k + 1 = i, i4k + 2 = – 1, i4k + 3 = – i

The conjugate of the complex number z = a + ib, denoted by z , is given by
z  = a – ib.
The polar form of the complex number z = x + iy is r (cosθ + i sinθ), where

r = 2 2x y+  (the modulus of z) and cosθ  = 
x
r , sinθ  = 

y
r . (θ is known as the

argument of z. The value of θ, such that – π < θ ≤ π, is called the principal
argument of z.
A polynomial equation of n degree has n roots.
The solutions of the quadratic equation ax2 + bx + c = 0, where a, b, c ∈ R,

a ≠ 0, b2 – 4ac < 0, are given by x = 
24

2
b ac b i

a
− ± −

 .
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Historical Note

The fact that square root of a negative number does not exist in the real number
system was recognised by the Greeks. But the credit goes to the Indian
mathematician Mahavira (850) who first stated this difficulty clearly. “He mentions
in his work ‘Ganitasara Sangraha’ as in the nature of things a negative (quantity)
is not a square (quantity)’,  it has, therefore, no square root”. Bhaskara, another
Indian mathematician, also writes in his work Bijaganita, written in 1150. “There
is no square root of a negative quantity, for it is not a square.” Cardan (1545)
considered the problem of solving

x + y = 10, xy = 40.

He obtained x = 5 + 15−  and y = 5 – 15−  as the solution of it, which
was discarded by him by saying that these numbers are ‘useless’.  Albert Girard
(about 1625) accepted square root of negative numbers and said that this will
enable us to get as many roots as the degree of the polynomial equation. Euler
was the first to introduce the symbol i for 1−  and W.R. Hamilton (about
1830) regarded the complex number a + ib as an ordered pair of real numbers
(a, b) thus giving it a purely mathematical definition and avoiding use of the so
called ‘imaginary numbers’.

— —
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